Full Text Literature
Mining for Gene Disease Relationships

Nils Schimmelmann

Advisor: Dr. Predrag Radivojac

Indian University, Bloomington, Indiana
What is text mining?

- Finding useful data in “noisy” formats
 - Human readable
 - Not intended for machines

- Example formats
 - Websites
 - Biomedical research journals

- Typically seen in search engines
What are gene disease relationships?

- A correlation between a gene and a disease
 - Cancer and TP53
- Weak vs. strong relationships
 - Over-expressed genes
 - Causative mutation
 - Cystic Fibrosis and CFTR
 - Sickle cell anemia and HBB
 - Consequence of disease
 - Hypertension, cardiac arrest, diabetes
Why use text mining?

- Curated databases are slow to take on new relationships
 - OMIM – genotype/phenotype
 - SwissProt – protein information
 - PharmGKB – drug response
 - HGMD – gene mutation
Why use text mining?

- Technology allows for more experiments, resulting in more gene-disease relationships
- Community is increasing in size
- Published biomedical literature contains these gene-disease relationships
- Text mining is a way to effectively parse this data from the ever increasing amounts of published literature
 - Database curating assistance
Why use full text mining? Advantages and Disadvantages

Abstracts
• Density of useful information is at its highest
• Less text, allowing for less computational power

Full Text
• Higher coverage of information
• More text, requires clusters of computers
• Noise from more text (conjectures, future work, citations)
• Variety of formats: PDF, HTML, XML, etc

Jimmy Lin. *Is Searching Full Text More Effective Than Searching Abstracts?*
BMC Bioinformatics, 10:46 (3 February 2009)
Literature Mining Objectives

- Extracting facts from literature
 - Verification, data creation

- Automated annotation
 - Curating, scoring

- Relationship discovery
 - Hypothesis generation
Journal Crawler

- Journals do not allow users to easily download their articles for text mining

- A custom journal crawler script was written
 - Hand tailored for each journal website

- Parses link anchors and urls and uses regular expressions to match for articles
Article Data

• 48 journals
 – Expected to have gene-disease relationships
 – 259,051 total articles from 1996 – 2008

• Examples:

<table>
<thead>
<tr>
<th>Journal</th>
<th>Years</th>
<th>Articles</th>
<th>% of all articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>1996 - 2008</td>
<td>44,392</td>
<td>8.71%</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>2005 - 2008</td>
<td>5,032</td>
<td>0.99%</td>
</tr>
<tr>
<td>Annals of Oncology</td>
<td>2002 - 2008</td>
<td>4,336</td>
<td>0.85%</td>
</tr>
<tr>
<td>BMC Biology</td>
<td>2003 - 2008</td>
<td>416</td>
<td>0.08%</td>
</tr>
</tbody>
</table>

• Each article was given an index for identification
Disease Data

• 14,464 disease terms from the “Disease Ontology”
 – Collaboration between the NuGene project and the Center for Genetic Medicine
 – Version 2.1
 – Structure of ontology ignored

• Each disease was indexed according to its identifier DOID
Gene Data

- 26,414 genes from the HUGO Gene Nomenclature Committee
 - Official gene symbols
 - http://www.genenames.org
- Symbols and synonyms extracted
 - Three characters or more
- Each gene was indexed to its HGNC identifier
Text Retrieval

- We need to map the gene and disease indexes to one another to get relationships.
- So how do we discover the relationships?
Text Retrieval

- We search the articles for the diseases and genes

<table>
<thead>
<tr>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
</tr>
<tr>
<td>a_2</td>
</tr>
<tr>
<td>a_3</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>a_n</td>
</tr>
</tbody>
</table>

- Gene g_1 was found in articles \{ a_1, a_2, a_3 \}

- Disease d_1 was found in articles \{ a_3, a_4, a_5 \}

- A potential relationship would be the intersect of g_1 and d_1: a_3
All articles were indexed and searched using SWISH-E, an open source search engine. Hits were whether or not a term was found in an article.

- 5,206 disease terms found (36% of all terms within the disease ontology)
- 19,395 genes found (73% of all genes)
- 5,734,417 gene-diseases joint terms found (6% of all pairs found in at least one article)
Similarity Measures

- How do we identify a probable relationship?

\[I(g ; d) = \log \frac{p(g , d)}{p(d) p(g)} \]

- Mutual information
 - \(p(g) \) – probability that gene \(g \) occurs
 - \(p(d) \) – probability that disease \(d \) occurs
 - \(p(g, d) \) – probably that gene \(g \) and disease \(d \) occurs

- We rank articles based on this score
Word Proximity Method

- How to improve the simple “term hits” in the baseline method
- Joint terms could mean a gene in the abstract and a disease in the citations
- This noise can be filtered out
Word Proximity Method

- Take the disease “breast cancer” and the gene “BRCA1” along with their synonyms.
Word Proximity Method

- Take the disease “breast cancer” and the gene “BRCA1” along with their synonyms
- We now count the distance in characters between each disease and gene, creating a pair
Word Proximity Method

- Take the disease “breast cancer” and the gene “BRCA1” along with their synonyms
- We now count the distance in characters between each disease and gene, creating a pair
- Given a disease name, we select the gene symbol that is closest
- These terms are most likely to be related and be a possible gene-disease relationship
Word Proximity Method

- We score each article given a gene-disease pair, consider one article
 - we have a set of gene positions \(G = \{ g_1, g_2, \ldots, g_m \} \)
 - and a set of all diseases positions \(D = \{ d_1, d_2, \ldots, d_n \} \)

- The summed score is for the given article
 \[S = \sum_{i=1}^{n} \text{pair_score}(d_i, G) \]

- Where
 \[\text{pair_score}(d_i, G) = f(|d_i - g_k|) \]
 \[k = \arg\min_{j=1 \ldots m} |(d_i - g_j)| \]

- The function \(f(x) = e^{-d \cdot x} \) is used, where \(d \) is a positive constant, \(e \) is Euler's constant, and \(x \) is the distance
Similarity Measures

• How do we turn word proximity into a similarity measure, such as mutual information?

\[I'(g; d) = \log \frac{p(S(g, d) \geq t)}{p(d) p(g)} \]

• where \(p(S(g, d) \geq t) \) is the number of word proximity scores above threshold \(t \) over all possible articles.
Word Proximity Method

- Various values used for the threshold t and constant d
 \[p(S(g, d) \geq t) \]
 \[f(x) = e^{-dx} \]

- The parameter of t was tested from
 - 0 through 5×10^{-230}

- The constant d was tested from
 - 0.0005 to 3

- This was done to find the best results
Measuring Accuracy

- True gene-disease relationships were taken from:
 - “Disease Ontology”
 - PharmGKB

- The gene associations were propagated up the diseases ontology
 - Breast Cancer/BRCA1 would imply Cancer/BRCA1
Measuring Accuracy

- **True positive rate**: fraction of correctly identified true positives (known, correct gene disease relationships)
- **False positive rate**: fraction of incorrectly identified negatives
- **AUC** is the area under the receiver operating characteristic: Plot of the two operating characteristics TPR vs FPR
- **Mutual information** is used to rank the relationships
Similarity Measure AUCs

- Calculated on all gene-disease pairs with some pruning

- The disease had to be within the known set of true gene disease relationships

- The relationships needed at least 10 articles of evidence
Similarity Measure AUCs

• Mutual information (base line)
 - 67.6%

• Word Proximity \((t=0.05, \ d=0.04)\)
 - 68%

• Word Proximity \((t=5\times10^{-145}, \ d=2.98)\)
 - 68.7%
Machine Learning

● WEKA 3, a data mining suite
 - http://www.cs.waikato.ac.nz/ml/weka/

● Algorithms used in a 10 fold cross-validation:
 - Random Forests
 - Neural Network
Machine Learning

- 86 attributes and 1 class
 - 2 attributes for gene HGNC and disease DOID
 - 84 attributes were based on random `t` and `d` pairs, with scores being their word proximity mutual information
 - 1 class whether it was a true relationship

- Gene and disease attributes included to allow for supervised learning on the interacting genes and diseases
- A total of 184,041 instances
Random Forests

- Consists of decision/regression trees
- Uses information gain/variance
- Prunes itself using reduced-error pruning (with backfitting)

- AUC of 86.5%
 - Precision of 65.4%
 - Recall of 12.6%
Artificial Neural Network

- Feed-forward artificial neural network
- Simulates the structure of a biological neural network
- 3 hidden layers

- AUC of 82.7%
 - Precision of 60%
 - Recall of 6.6%
AUC Results

- Mutual information (base line)
 - 67.6%
- Word Proximity (t=0.05, d=0.04)
 - 68%
- Word Proximity (t=5\times10^{-145}, d=2.98)
 - 68.7%
- Random Forests
 - 86.5%
- Neural Network
 - 82.7%
AUC Results

```
RCC Area

True positive rate

False positive rate

- Random Forests
- Neural Network
- Word Proximity (t=0.05, d=0.04)
- Word Proximity (t=5x10^{-145}, d=2.98)
- Mutual Information (baseline)
```
Other Attempted Features

- Gene and disease features work better with word proximity mutual information scores

<table>
<thead>
<tr>
<th>Implemented</th>
<th>AUC</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forests</td>
<td>86%</td>
<td>65%</td>
<td>13%</td>
</tr>
<tr>
<td>Neural Network</td>
<td>83%</td>
<td>60%</td>
<td>7%</td>
</tr>
<tr>
<td>Gene and disease features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Forests</td>
<td>70%</td>
<td>74%</td>
<td>2%</td>
</tr>
<tr>
<td>Neural Network</td>
<td>65%</td>
<td>63%</td>
<td>5%</td>
</tr>
<tr>
<td>Only gene and disease features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Forests</td>
<td>80%</td>
<td>70%</td>
<td>6%</td>
</tr>
<tr>
<td>Neural Network</td>
<td>66%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Result Analysis

- False positives
 - Might be true as they can be gene disease relationships that are not in already in the curated databases
 - Can be noise, conjectures, etc

- Machine learning provides a huge increase in the highly ranked true positive results!
Top 10 Inferred Predictions

- Random Forests

<table>
<thead>
<tr>
<th>Rank</th>
<th>Gene</th>
<th>Disease</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>RECQL5</td>
<td>Congenital poikiloderma</td>
<td>European Journal of Human Genetics</td>
</tr>
<tr>
<td>2)</td>
<td>PGLYRP1</td>
<td>Muscular Dystrophy, Emery-Dreifuss</td>
<td>PlosBiology article glob</td>
</tr>
<tr>
<td>3)</td>
<td>SLC11A2</td>
<td>microcytic anemia</td>
<td>PubMed</td>
</tr>
<tr>
<td>4)</td>
<td>IGFALS</td>
<td>Amyotrophic Lateral Sclerosis</td>
<td>PubMed</td>
</tr>
<tr>
<td>5)</td>
<td>FRAXA</td>
<td>Fragile X syndrome disorder</td>
<td>FRAXA is a organization</td>
</tr>
<tr>
<td>6)</td>
<td>IGHVOR15@</td>
<td>Leukemia</td>
<td>PubMed</td>
</tr>
<tr>
<td>7)</td>
<td>SIX5</td>
<td>Steinert myotonic dystrophy syndrome disorder</td>
<td>Articles cite correlation, not definitive proof</td>
</tr>
<tr>
<td>8)</td>
<td>FAH</td>
<td>Tyrosinemias</td>
<td>Wiley Interscience</td>
</tr>
<tr>
<td>9)</td>
<td>DGCR6</td>
<td>Deletion 22q11.2 syndrome</td>
<td>Wiley Interscience</td>
</tr>
<tr>
<td>10)</td>
<td>DGCR</td>
<td>Deletion 22q11.2 syndrome</td>
<td>Wiley Interscience</td>
</tr>
</tbody>
</table>
Top 10 Inferred Predictions

Neural Network

<table>
<thead>
<tr>
<th>Rank</th>
<th>Gene</th>
<th>Disease</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NPEPPS</td>
<td>cancer</td>
<td>Molecular Endocrinology</td>
</tr>
<tr>
<td>2</td>
<td>KLK3</td>
<td>cancer</td>
<td>Carcinogenesis</td>
</tr>
<tr>
<td>3</td>
<td>PSAT1</td>
<td>cancer</td>
<td>Molecular Cancer</td>
</tr>
<tr>
<td>4</td>
<td>EGF</td>
<td>cancer</td>
<td>Annals of Oncology</td>
</tr>
<tr>
<td>5</td>
<td>CD19</td>
<td>lymphoma</td>
<td>Wiley Interscience</td>
</tr>
<tr>
<td>6</td>
<td>SERPINB3</td>
<td>cancer</td>
<td>PubMed</td>
</tr>
<tr>
<td>7</td>
<td>ZBED1</td>
<td>cancer</td>
<td>Nucleic Acids Research</td>
</tr>
<tr>
<td>8</td>
<td>COX8A</td>
<td>cancer</td>
<td>BMC Cancer</td>
</tr>
<tr>
<td>9</td>
<td>DLD</td>
<td>cancer</td>
<td>PubMed</td>
</tr>
<tr>
<td>10</td>
<td>TNFSF10</td>
<td>cancer</td>
<td>Nature</td>
</tr>
</tbody>
</table>
Conclusion

- Word proximity is a simple method that can filter a large amount of noise is present within full text journal articles.
- Some manual curating is still necessary because some gene-disease relationships are incorrect.
 - Conjectures
 - Common examples (cancer)
 - Article inconsistencies (citations, etc)
- The system works very well at filtering large amounts of data
Acknowledgements

- Dr. Predrag Radivojac
- Lab mates –
 - Amrita Mohan
 - Wyatt Clark
 - Yong Li
 - Fuxiao Xin
 - Shuyan Li
 - Biao Li
 - Sujun Li
 - Nathan Nert
 - Rajeswari Swaminathan
 - Aaron Buechlein
- Linda Hostetter
- Bioinformatics faculty at the School of Informatics
- School of Informatics
Questions?